

Reducing Utility Consumption

A Better Bottom Line

Ian Crookston, CEM, CMVP, P. Eng. Sobeys Inc.

About Sobeys Inc.

- Established in 1907
- One of Canada's two national grocery retailers
- \$21 Billion in annual sales & 125,000 employees and franchise affiliates
- More than 1,500 stores across all 10 provinces, as well as more than 370 retail fuel locations
- Retail banners include Sobeys, Safeway, Thrifty Foods, IGA, Foodland, FreshCo and Lawton's Drugs

Canadian Environment

- 10 Million km² & 36 Million people
 - > 3.4 people/km²
- ASHRAE Climate Zones
 - ➤ 4 (Vancouver, British Columbia) / 8 (Whitehorse, Yukon Territories)
- Energy (average cost)
 - > Electricity (at plug): \$0.07 to \$0.15/kWh
 - > Natural Gas (at burner tip): \$0.02 to \$0.08/kWh (\$6 to \$23/GJ)

• CO₂ impact

- \triangleright Electricity: 0.002 (Manitoba) to 0.841 (Alberta) CO_{2e} tonne/kWh \rightarrow 420:1 ratio
- \triangleright Refrigerant: 0.0010 (R744 / CO₂) to 3.3 (R507) CO_{2e} tonne/kg \rightarrow 3,300:1 ratio
- > Taxes: \$0.00/tonne (at present; but significant future risk)

Energy usage (Sobeys)

Refrigeration: >60% (we design a refrigeration rich environment)

Cost Saving Vs Cost Avoidance

Cost Saving: Reduce \$/ft²

- \triangleright Not possible if rates (\$/kWh) are rising faster than ability to reduce energy intensity (kWh/ft²)
- ightharpoonup Cost Savings (\$) = (\$/ft²_{Old} \$/ft²_{New})*(ft²_{New})

Cost Avoidance: Reduce kWh/ft²

- > A truer measure of achievement
- > How we track progress for sustainability reporting
- ightharpoonup Cost Avoidance (\$) = (kWh/ft²_{Old} kWh/ft²_{New})*(\$/kWh_{New}) *(ft²_{New})

Energy Conservation

- Provincial incentives (\$/kWh)
 - > Typically reduce Simple Payback by one year
 - ➤ One time benefit, which can increase, or decrease
 - ➤ Vary by province
- Rates (\$/kWh)
 - ➤ Ongoing cost, which typically only increases
 - ➤ Vary by province

Higher Incentives →

Typical Full Service Format Store

• ~50,000 ft²

Electricity

- $> ^{\$}35/hour \times 8,760 hours/year = $300,000/year$
- ➤ Refrigeration represents ~60% (\$180,000)

Centralized refrigeration racks

- ➤ Medium temperature: 5 to 7 compressors
- ➤ Low temperature: 5 to 7 compressors

What Did We Do?

- Picked a test site
 - > Southern Ontario
 - >42,000 ft²
 - ➤ Built: 1991
- Contacted Local Distribution Company (LDC)
 - ➤ SaveONenergy incentives
- Baseline existing system
- Developed series of projects
 - ➤ Project #1: Existing Building Commissioning
 - ➤ Project #2: Adiabatic cooling (condenser misting)
 - ➤ Project #3: Variable flow compressors

Thermodynamic Model

- Thermodynamic evaluation = Unbiased system view
 - ➤ No information about external loads, compressors, etc.
 - Electrical sub-metering, temperatures and pressures

- 2 pressure sensors
- 7 temperature sensors
- 1 power meter

System Specific Flowchart

Baseline Existing System

- Performance monitoring and analyzing system
 - ➤ Real time data logging
 - Electrical sub-metering, temperatures and pressures at one minute intervals

Power Profile - Measurement & Verification Tool

Power Profile

- > Average kWh at each Outdoor Ambient Temperature (OAT)
- ➤ Averaged over one hour
- > Averaged by additional data points

Measurement & Verification (M&V)

- ➤ Pre and post project Power Profile (kW/°C)
- ➤ Bin Temperature data (°C hours)
- ➤ kWh/year savings

—Nominal Profile ——Optimized Profile

System Efficiency Index (SEI)

- Normalized unit of absolute efficiency
- Introduced by VDMA (Germany) and IOR (UK)
- 100% SEI: System operating at ideal theoretical efficiency (Carnot Cycle)
- Independent of operating conditions
 - Coefficient of Performance (COP), Energy Efficiency Ratio (EER), Etc. based on design/standard conditions
 - Saturated Suction Temperature
 - Condensing Temperature
- Evaluation of sub-system performance
 - Compressor (Isentropic efficiency)
 - > Evaporator
 - Condenser
 - Auxiliary loads

System Efficiency Index (SEI)

- SEI independent of outdoor ambient temperature
 - > Should be consistent across wide range of temperatures
 - > Changes Vs temperature represent issues with sub-system performance
 - Doesn't always show up on the Power Profile
 - > Differences between systems represent overall efficiency differences

Project #1: Existing Building Commissioning (EBCx)

- Low / No cost optimization
- Opportunities based on reviewing baseline data
 - Setpoints
 - > Sequencing
 - Condenser fan control

Power input Comp. (kW)

Ref Cond (°C)

Power input Comp. (kW) Ref Cond (°C)

Before: Short cycling

Project #1: Before & After After: Reduced Cycling

Project #1: Extended Energy Data

- Existing Building Commissioning complete March 2014
 - ➤ Annual Savings: 173,000 kWh/year
 - ➤ Simple Payback (after incentives): 1.2 years

Project #2: Adiabatic Cooling

- Many air cooled condensers are marginally sized when new
- 20 year old condenser often ~20% degraded from new
- Garden sprinkler often used to wet condenser on hot days
 - > Evaporative cooling: dry bulb versus wet bulb temperature

Key issues

- ➤ Uneven condensing due to uneven wet/dry area
- > Excessive water usage

Solution

- ➤ Install "misting" system
 - Even condensing
 - Significant reduction in water usage

Project #2: Existing Sprinkler

Project #2: New Misting

- Nozzles installed under the condenser
- Water is forced into a fine mist and quickly evaporates
- Air temperature drops from dry bulb to wet bulb

Project #2: Utility Savings

- Sprinklers operate from June to September
- Electricity and water / sewage charge savings
- 2,500m³ = Olympic swimming pool of water

Table 2: Pre and Post Implementation Values

Utility	Pre- Implementation [†] Previous 3 year average	Post- Implementation† 2 year average	Savings	Annual Savings (\$)
Water (Annual Data)	5,618 m ³	2,879 m3	2,739 m³	\$5,800.00
Electricity (Weekly Data)	17,684 kWh	15,997 kWh	1,687kWh/week 25,305kWh/year	\$2,500.00

Project #2: Water Savings

Project #3: Variable Flow Compressor

- Project #3: Variable flow compressor
 - ➤ Both existing Refrigeration Racks had one weak Compressor
 - ➤ Opportunity to upgrade from Constant Flow to Variable Flow Compressor
 - Variable Flow Compressors allow for better load control

Energy Efficient Replacement

Project #3: Pre and Post Energy Data

TABLE 5: PRE- IMPLEMENTATION PERIOD

System	Pre-Implementation Period	Pre- Implementation Yearly	Pre- Implementation	
System	Energy Consumption*	kWh Consumption Estimate	Peak kW Demand	
LT Rack	263,330	433,441	64.5	
MT Rack	181,330	343,274	62.6	
Total	444,660	776,715		

^{*}Pre-Optimization Period is September 1st 2013 to April 22nd 2014 (223 days)

TABLE 6: POST- IMPLIMENTATION PERIOD

System	Post- Implementation Period Energy Consumption*	Post- Implementation Yearly kWh Consumption Estimate	Post- Implementation Peak kW Demand
LT Rack	74,988	386,051	62.6
MT Rack	55,344	267,699	59.6
Total	130,332	653,750	

^{*}Post Optimization Period is April 23rd 2014 to June 30th 2014 (69 days)

Project #3: Business Case

TABLE 14: SUMMARY OF SIMPLE PROJECT COSTS, OPA INCENTIVES, ANNUAL OPERATIONAL SAVINGS AND SIMPLE PAYBACK CALCULATIONS

Simple payback without Incentives	1.1 years	
Simple payback with Incentives	0.6 years	
Estimated Annual savings	\$ 12,740	
Net Project Cost	\$ 7,050	
OPA Incentives (Max 50% of costs)	\$ 7,050	
Total Project Cost	\$ 14,100	

Power Profile: LT System (Baseline, Post Project #1 & 3)

Power Profile: MT System (Baseline, Post Project #1 & 3)

SEI: LT System (Baseline & Post Project #1 & 3)

SEI: LT Sub-Systems (Post Project #3)

SEI: MT System (Baseline & Post Project #1 & 3)

SEI: MT Sub-Systems (Post Project #3)

Sustained Savings

- No degradation in energy use over 18 months
 - > System issues identified through monitoring energy change are corrected:
 - Helps prevent catastrophic shut-down
 - Reduces Store Based Alarms (down ~66%)
 - Sustains cost savings

Opportunities

- Enclosing medium temperature multi-deck cases
 - >~\$100/year/linear foot savings
 - ➤ New construction: first cost neutral
 - ➤ Replacements: <5 year simple payback (>20% ROI)
- 100% LED Vs Linear Fluorescent Lighting
 - ➤ New construction: <4 year simple payback (>25% ROI)
 - ➤ Replacement: <6 year simple payback (>15% ROI)
- Replacing Primary Roof Top Unit (RTU) > 15 years old
 - ><4 year simple payback (>25% ROI)

Questions?

Thank You