Energy & Store
Development Conference

E+50

September 7-10, 2014 St. Louis Union Station Hotel St. Louis, MO

Refrigeration System Comparison Hy-Vee Case Study

Intro by:

Jon Scanlan

Hy-Vee

Presentation by:

Danny Halel

Hussmann Corporation

a partnership of...

Conclusion & Closing

Intent & Data


Locations & Architectures

Store-level Metrics

Architecture Metrics

Preface

You can't compare apples-to-apples *unless* you *only* have apples...
But, you *can* compare commonalities between apples and oranges.
~TF

not apples to apples...
but, still fruit

Our intent... To generate metrics, derived from commonalities among refrigeration architectures, which may provide insight into how those architectures compare.

Definitions

Architecture:

Type of refrigeration system including its condenser (i.e. distributed, rack, secondary loop, DX, etc.)

Refrigeration [Energy]:

Sum of: Compressors + Condensers + Cases (lights, fans, anti-sweats, etc.) + Defrost

Compressor COP (Coefficient of Performance):

Required capacity [as kW] / comp input kW (ZF15K4E comp at -7F SST and 110F SCT has a capacity of 23,781 BTU/hr. and pulls 4.08 KW the COP = 23,781/(4.08*1000*3.41) = 1.71 (NOTE: The higher the COP, the better)

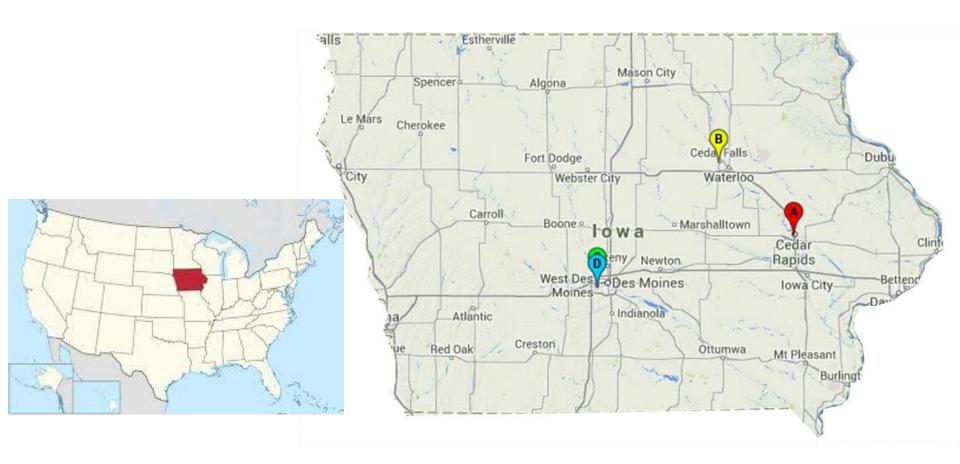
System COP:

Required capacity [as kW] / input kW (comp + cond + pumps + evap fans + load contributors +)

Energy vs Power:

Energy = consumption in kWh Power = demand in kW

Intent & Data

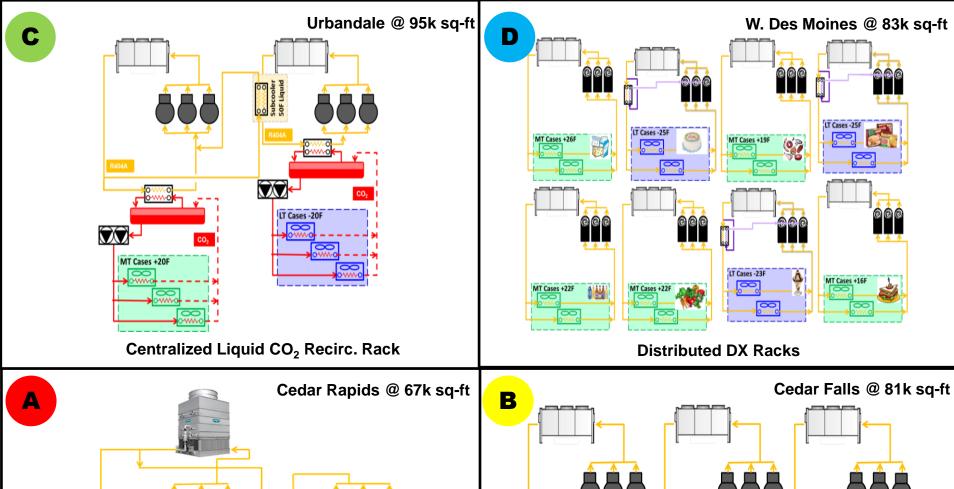

Locations & Architectures

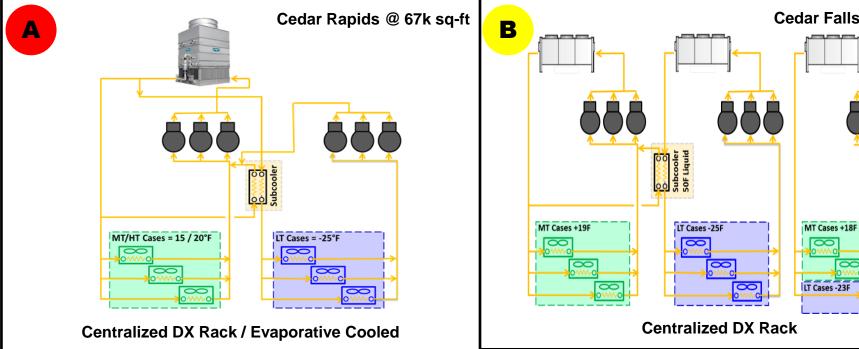
Store-level Metrics

Architecture Metrics

Conclusion & Closing

Locations Chosen


- A. Open-drive DX Racks / Evap. Cooled
- B. Multiple DX Racks/Distributed (1)
- C. MT & LT Secondary CO₂ Racks
- D. Distributed DX

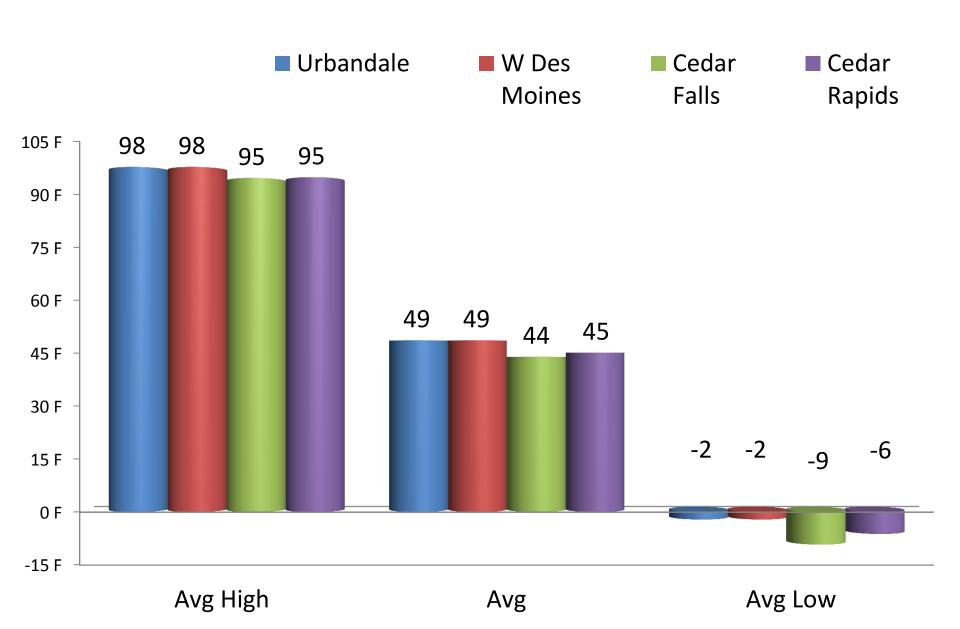

Cedar Rapids, IA

Cedar Falls, IA

Urbandale, IA

West Des Moines, IA

Architectures


Location	LT	MT	Cond	LEDs	Doors
Urbandale	$R-404A \& CO_2 LR$	$R-404A \& CO_2 LR$	Air	LT & MT Dairy	LT & MT Dairy
W. Des Moines	R-404A DX Distributed	R-404A DX Distributed	Air	NO	LT
Cedar Falls	R-404A DX Rack	R-404A DX Rack & Distributed (for wine/spirits)	Air	NO	LT
Cedar Rapids	R-404A DX Open Drive	R-404A DX Open [Direct] Drive	Evap	NO	LT

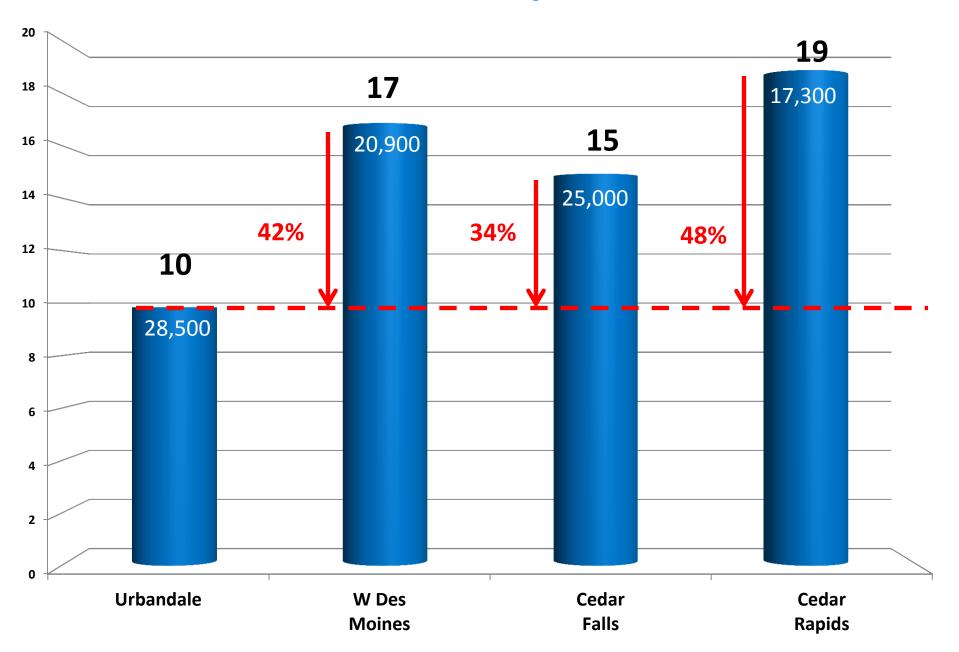
Note: Urbandale MT Dairy has 256 ft. of Open Throat cases applied with doors reducing the load from 1,260 BTU/ft. to 252 BTU/ft. (an 80% reduction)

Summary Case Data - LT

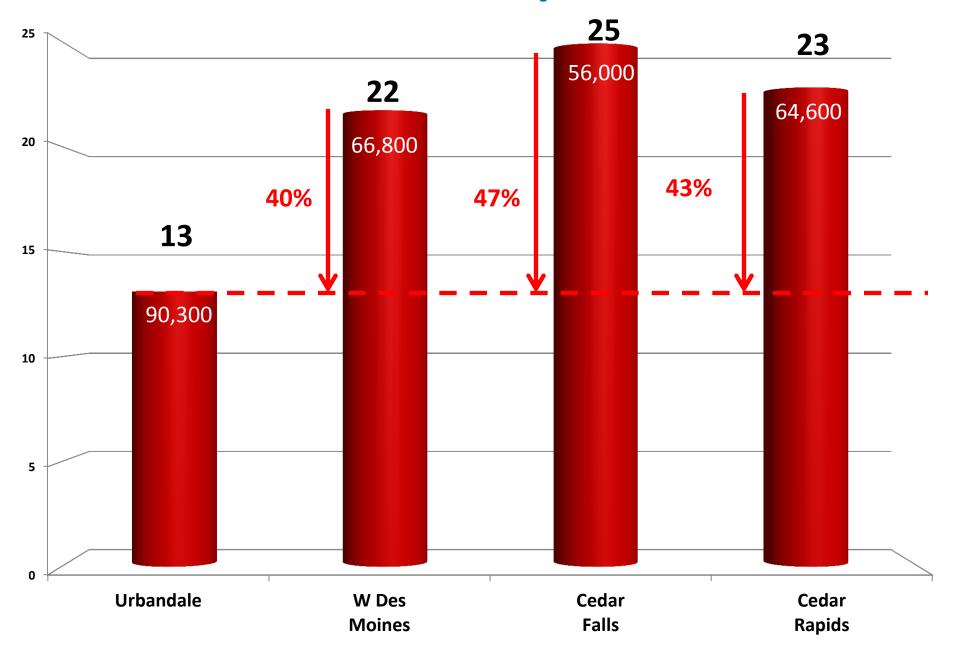
Location	Арр.	Fans (Watts)/Type	Lights (Watts)/Type	Total (Watts)	Total by store (Watts)	
TT 1 1 1	LT	4,815 HE	4,144 LED	8,959	20, 402	
Urbandale	MT	12,127 HE	17,316 LED/Fl	29,443	38,402	
W. Des	LT	13,321 Std.	12,412 Fl	25,733	72 105	
Moines	MT	21,252 HE	26,210 Fl	47,462	73,195	
Codon Follo	LT	13,995 Std.	14,520 Fl	28,515	76 254	
Cedar Falls	MT	20,164 HE	27,575 Fl	47,739	76,254	
Cedar Rapids	LT	6,927 HE	11,528 Fl	18,455	66 272	
	MT	22,771 HE	25,146 Fl	47,917	66,372	

Weather (NOAA)

Intent & Data
Locations & Architectures
Store-level Metrics


Architecture Metrics
Conclusion & Closing

Store Characteristics


Location	Sq-ft of store	Case&WI sq.ft./ Store sq-ft	Total store energy kBTU/sq-ft	Linear Ft of case	Refrigeration Load <i>MBTU</i>	LT % of load	MT % of load
Urbandale	95,188	13.5%	223	1,942	1,463	19.2%	80.8%
W. Des Moines	82,982	12.3%	242	1,613	1,803	19.5%	80.5%
Cedar Falls	80,631	12.0%	264	1,787	1,767	21.2%	78.8%
Cedar Rapids	67,311	13.3%	315	1,508	1,799	18.2%	81.8%

Note: kBTU = gas & electric energy — total store

[LT, required load] BTU/cu-ft [of case]

[MT, required load] BTU/cu-ft [of case]

Energy Comparison 5,000 Avg [Arch] kWh / yr Avg [refrig] kWh / yr
Avg [store] kWh / yr 4,500 4,000 3,500 Thousands kWh/yr. 3,000 2,500 **42% 45% 50% 51%** 2,000 66% 61% 61% 60% 1,500 1,000 500 0 Urbandale W Des Cedar Cedar Moines **Falls** Rapids

Intent & Data
Locations & Architectures
Store-level Metrics
Architecture Metrics
Conclusion & Closing

COP Impact & SSTs

	Urbandale		W. Des Moines		Cedar Falls		Cedar Rapids		
	A								
	Averaged Compressor COP & Saturated Suction Temps								
	CO ₂ Secondary		Distributed		DX + Distributed		DX [OD] + E.Con.		
	СОР	SST	COP	SST	СОР	SST	COP	SST	
LT	2.07	-27	2.45	-22	2.52	-24	2.61	-25	
MT	3.18	13	4.33	19	4.46	18	5.26	18	

	Architecture COP (includes comp, cond., fans, pumps) & Drop from Comp. COP								
	Urbandale		W. Des Moines		Cedar Falls		Cedar Rapids		
	CO ₂ Recirc. Distributed		DX + Distributed		DX [OD] + E.Con.				
	COP	% Drop	COP	% Drop	COP	% Drop	СОР	% Drop	
LT	1.79	14%	1.84	25%	1.83	27%	1.74	33%	
MT	2.38	25%	2.92	32%	2.74	38%	3.61	31%	

Condenser Efficiencies

% / °F	Urbandale	W. Des Moines	Cedar Falls	Cedar Rapids
	Air	Air	Air	Evaporative
LT	1.36%	1.93%	1.27%	1.13% (air)
MT	2.17%	2.51%	1.66%	0.87% (H2O)

If we have a 1 degree change in ambient outdoor temperature the % shown is the

increase or decrease in energy used.

Intent & Data
Locations & Architectures
Store-level Metrics
Architecture Metrics
Conclusions & Closing

Case Study Conclusions

- There is not one solution for every application.
- Energy impact to the architecture and total store energy is significant when adding doors & LEDs on cases.
- The old assumption of 50% of the total electrical load is the refrigeration system is true, however, this can be reduced by paying close attention to the load structure (i.e. LED's, Doors, EEF, VFD).
- The impact to COP is negatively affected when adding the condenser and evaporator energy however, this can have a smaller impact by paying attention to loads such as fans (including VFD's on condensers), LED lights and doors.
- The original goal of determining the "best" architecture cannot be derived from this study. [Stay tuned for the sequel.]
- Leak management must be considered, yes even in an energy study.

Lessons Learned

- Determine scope and goals make sure the infrastructure you have designed and have in place allows you to accomplish the goals
- Know your data and data points consistency is key.
- Sensors, sensors, sensors! Calibration, calibration, calibration!
- Give ample time to evaluate some "issues" don't show up until the end
- There is no one system that is the silver bullet, each store design has specific needs and these must be addressed.
- Working in a vacuum sucks!

Special thanks to all project teams...

THE VOICE OF FOOD RETAIL

Jon Scanlan Store Directors Maint. Techs Tobey Fowler
Danny Halel
Shannah Eitter
John Terry
Jeff Hosbond

Autumn Nicholson Ben Rola

Myles Crubel (of EMC)

Questions?

"limit of one per person per day"