Energy & Store
Development Conference

E+SC

September 7-10, 2014 St. Louis Union Station Hotel St. Louis, MO

Refrigerants: a Roadmap for Efficiency and Sustainability

Robert Wilkins, Danfoss Jeff Staub, Danfoss

Presenters

Robert Wilkins
 Vice President, Public Affairs

Jeff Staub
 Applications Manager, Americas

Contents

- Policy Perspective
 - Current Policy Landscape
 - Likely Paths Forward
 - Implications
- Technical Perspective
 - Current Refrigerants in Operation
 - New Refrigerants
- Conclusions
 - Policy Implications for Decisions Today and Tomorrow
 - Recommendations Based on Available Technical Solutions

Montreal Protocol Uniquely Successful

- Global cooperation
- Dual results achieved
 - Ozone depletion
 - CO₂ equivalence
- HFC growth could offset gains already achieved
- Global consensus growing
- HFC phase down likely but timing is uncertain.

Ozone Depletion and Global Warming

Ozone Depletion and Global Warming

European F-Gas Regulation Now Approved

- HFC Phasedown: 2015-2030
 - Cap and trade system
 - Supplementary bans
 - Esp. R404A & R507 with very high GWPs
 - Other: leak detection, reporting requirements, etc.
- Future is beginning to unfold.
 - Traditional HFCs now under increasing pressure
 - Natural refrigerants and other low-GWP refrigerants will grow
 - Intermediate solutions like R407A/F
 - R32 might be used in cascade CO₂ systems
 - New blends and solutions might arise
- Influences policies in USA and rest of world

Montreal Protocol Amendment Proposals

- North American phase down proposal (Canada, Mexico and USA)
 - Resubmitted May 9, 2014
 - Some changes to baseline and timing of phase down
- Alliance for Responsible Atmospheric Policy has made a public statement of support for the first time
- Debated at Montreal Protocol OEWG meetings July 14 18
 - Little change from prior year
 - 110 (80%) of countries have signed a declaration of support
 - India has been strongest opponent
- Prospect for annual Montreal Protocol Meeting of the Parties (Paris, Nov. 17-21)
 - Not likely to pass this year
 - Some discussion of alternative approaches through Montreal Protocol

Regulatory – Phase-down Schedules and Proposals

US Legislative and Regulatory Developments

- Legislation highly unlikely due to political gridlock (even if most industry prefers legislation over regulation)
- President Obama's Climate Action Plan
 (Two EPA SNAP proposals seek to do what could be done without legislation)
 - 1. Proposes to approve new low-GWP refrigerants
 - Hydrocarbons in domestic and light commercial refrigeration
 - R32 in some a/c systems
 - 2. Proposes "de-list" HFCs when lower GWP solutions developed
 - R134a in automotive A/C, some refrigeration, R404A
 - January 1, 2016 timing is the biggest issue to industry

US Manufacturer Initiatives

- Generally supportive of a "planned orderly phase down"
 - Uses market forces to allocate production
 - Avoids "command and control" regulatory tactics
- Manufacturers oppose "over reliance" on SNAP mechanism
 - Less effective
 - Creates regulatory uncertainty
- Petitioned EPA to tighten "responsible use" regulations
 - Aligned with regulations of CFCs and HCFCs
 - Important to reduce emissions, especially from existing equipment
- Manufacturers have proposed voluntary commitments to reduce HFC

2014 Is Becoming an Eventful Year

- February: The Alliance for Responsible Atmospheric Policy announced support (rather than commendations) for Montreal Protocol amendment
- April: EU F Gas regulation raises pressure on HFCs worldwide
- May: US, Canada and Mexico resubmit global phase down proposal
- June: President's Climate Action Plan
- Spring: EPA/Industry/State Department discussions
 - EPA SNAP NOPRs for listings and de-listings
- July: Montreal Protocol OEWG meetings in Paris
- September: Possible industry announcements
- September: UN Climate Summit in New York with HFC track
- November: Montreal Protocol Meeting of Parties in Paris

Policy Implications on Supermarket Industry

- HFC Phase down increasingly likely
 - Issue is "when" and "how", not "if"
- Public opinion may shift due to publicity HFCs is likely to receive
- Change in supermarket industry is likely to accelerate:
 - CO₂ systems: Trans-critical or cascade with HFCs, HFO or maybe HFC32
 - Self-contained equipment: small hydrocarbon charges
 - Building/fire codes coming under pressure to change
 - Legacy HFC systems under increased pressure
 - To reduce leaks
 - To switch to lower-GWP alternatives for highest GWPs (e.g., R404A)
- Supermarkets urged to evaluate alternatives and develop refrigerant management plans

^{*} Also called HFO. Molecules contain weak double bonds causing a fast breakdown in the atmosphere

^{**} R32 (HFC) and many of the new refrigerants are flammable or mildly flammable. Natural refr. are mainly flammable except R744.

Applications & Main Refrigerants

AHRI Alternative Refrigerant Evaluation Program

- Testing in various applications complete and ongoing
- No category "winners" yet
- Alternatives for refrigeration

	Alternative Refrigerant Candidates Classifications according to				
Baseline	ASHRAE Standard 34				
Refrigerants	A1	A2L	A3	Others	
		ARM-31a			
		ARM-30a			
R-404A	ARM-32a	D2Y-65			
	N-40a	L-40	R290	R-744	
	N-40b	R-32	R290		
	DR-33	R-32+R-134a			
		(50%+50%)			
		DR-7			
	ARM-32a	D52Y		D 4270	
R-22/R407C	LTR4X	L-20	R-290	R-1270,	
	N-20	LTR6A		R-717	

AREP – Proposed Alternatives for Refrigeration

Thermodynamic cycle calculations

THE VOICE OF FOOD RETAIL

AREP – Proposed Alternatives for Refrigeration

compressor calorimeter testing

		Deviation from baseline (R-404A)				
Refrigerant	Test Condition	EER (%)	Capacity (%)	Discharge Temperature (°F)		
ARM-31a	Evap 20°F/ Cond 120°F	+9.7%	-5.6%	+24		
	Over the range	-4.4% to +22.8%	-18.5% to +6.5%	+16 to +36		
D2Y-65	Evap 20°F/ Cond 120°F	+6.5%	+0.6%	+26		
	Over the range	-4.2% to +14.6%	-11.0% to +9.7%	+18 to +36		
L-40	Evap 20°F/ Cond 120°F	+9.8%	-4.9%	+37		
	Over the range	-5.4% to +24.7%	-20.0% to +8.9%	+25 to +53		
R-32 + R-134a mixture	Evap 20°F/ Cond 120°F	+4.2%	+3.8%	+63		
TO TO TO TO TO	Over the range	-7.6% to +15.2%	-12.6% to +18%	+38 to +74		

Need to Consider: Actual System Conditions, Discharge Temperatures, Pressure Ratio, and Refrigerant Glide

AREP – Proposed Alternatives for Refrigeration

Thermodynamic cycle calculations

Alternatives for Refrigeration

Refrigerant	Components	Glide	Pressure Match				
			-20°F	<u>10°F</u>	40°F	110°F	<u>130°F</u>
R-22	22	0	10	33	68	226	297
Look-Alike Blends							
R-417A	125 / 134a / 600	6.5	6	26	59	206	274
R-421A	125 / 134a	8	8	29	63	220	291
R-421B	125 / 134a	8	14	41	83	268	352
R-422A / C	125 / 134a / 600a	4.5	16	43	86	274	358
R-422B	125 / 134a / 600a	6	8	30	65	221	292
R-422D	125 / 134a / 600a	6	10	34	71	238	313
R-424A	125/134a/600a/600/601a	7	6	27	60	210	278
R-427A	32 / 125 / 143a / 134a	13	9	32	69	235	311
R-434A	125/143a/134a/600a	4	14	40	80	268	340
R-438A	32/125/134a/600/601a	6-7	12	36	75	245	320
R-404A (R-507)	125 / 143a / 134a	1.5	16	44	86	271	356
R-407A	32 / 125 / 134a	11	12	37	78	259	345
R-407F	32 / 125 / 134a	10	17	45	90	287	342

Alternatives for Refrigeration – Short List

EPA - Proposed Rule - Protection of Stratospheric Ozone: Change of Listing Status for Certain Substitutes under the Significant New Alternatives Policy Program

For new and retrofit retail food refrigeration (including direct supermarket systems and indirect supermarket systems), as of January 1, 2016

• HFC-227ea, R-407B, R-421B, R-422A, R-422C, R-422D, R-428A, and R-434A as unacceptable.

Refrigerant	Components	Glide	Pressure Match				
			<u>-20</u>	<u>10</u>	<u>40</u>	<u>110</u>	<u>130</u>
R-22	22	0	10	33	68	226	297
R-422B	125 / 134a / 600a	6	8	30	65	221	292
R-427A	32 / 125 / 143a / 134a	13	9	32	69	235	311
R-438A	32/125/134a/600/601a	6-7	12	36	75	245	320
R-407A	32 / 125 / 134a	11	12	37	78	259	345
R-407F	32 / 125 / 134a	10	17	45	90	287	342

CO₂ and Other Natural Refrigerant Solutions

- Approximately 4,000 CO₂ systems today- mature technology
- CO₂ technologies developing to overcome current challenges:
 - Efficiency in high ambient conditions
 - Integrated HVACR
 - Smaller formats
- Alternative system architectures are expanding options
- Training initiatives

The Industry Balancing Act:

Considerations of leading versus following

Potential Risks:

- Higher first costs
- Need to change again

Potential Reward:

- Faster ramp-up
- Flexibility with various outcomes
- Short-term competitive advantage
- Avoid need to change again
- Image of innovative leader

Recommendations

- Policy implications for decisions today and tomorrow
 - HFC phasedown- matter of time
 - "De-snap" list likely to drive options rather than GWP limits per se
 - Continue to gain knowledge/experience with natural refrigerants
 - Get involved Strengthen industry voice in policy making.
- Recommendations based on available technical solutions
 - New stores- consider pilots with new technologies, natural refrigerant options, and alternative system architectures
 - Retrofits- more similar options may make more sense given capital investment needs, but need to weigh multiple factors
 - Develop and/or review your refrigerant management strategy

Questions?

Contact Information:

Robert Wilkins 410-513-1153 Robert Wilkins @ Danfoss.com

Jeff Staub 410-513-1189 <u>JeffStaub@Danfoss.com</u>

Find the Danfoss Refrigerant Policy in the Refrigerant Options Now and in the Future (Paper) at http://www.danfoss.com/think