Energy & Store
Development Conference

E+SC

The Evolution Of Energy Management Systems

Introduction

- Electrical Engineer By Education
 - BSEE University of KY
 - MSEE University of MO
- 30 Years Designing Electronic Controls
 - HW & SW Design
 - Boeing, Mark Andy Inc., Emerson
- 17 Years Industry Experience (Emerson)
 - Engineering & Product Management
- Organizations
 - NAFEM, LONMark, NACS

Contact Info:
John Wallace
Director Product Management
Emerson Climate TechnologiesRetail Solutions

john.wallace@emerson.com 770 425 2724 (Office) 770 313 3011 (Cell) @johnwallace

Discussion Topics

Islands Of Control

Integration & Supervisory Functions

Getting Your Money's Worth And Beyond: What's Next?

Background & Evolution of Controls; The Transition To Electronics

How The EMS
Came To Be &
What It Does
Today

Using All The Capabilities In State of the Art Systems

What's Driving
Next Generation
Systems
Development

Definitions

Energy Management System (EMS)

Building Automation
System (BAS)

Facility Management
System (FMS)

- Slight Differences In Meaning Across Industries
- Generally BAS Implies Broader Integration
- Refer To A Collection Of Hardware & Software To Monitor And Control
 The Mechanical, Electronic & Lighting Systems
- Installed At A Single Site
- For Our Purposes, These Are The Same Thing

Discussion Topics

Islands Of Control

Integration & Supervisory Functions

Getting Your Money's Worth And Beyond: What's Next?

Background & Evolution of Controls; The Transition To Electronics

How The EMS
Came To Be &
What It Does
Today

Using All The Capabilities In State of the Art Systems

What's Driving
Next Generation
Systems
Development

Early Refrigeration & HVAC Systems Essence Of Simplicity!

Things Were Simple Then!

1900's

1940's-1970's

1970's-1990's

1990's-2010's

Systems Evolved With Emphasis On Mechanical Controls

- Early Refrigeration Systems Transitioned From "Refrigerators" To Rack Based Systems
- Typically Mechanical Control Systems
 Operating Independently
 - Defrost Time Clocks
 - Thermostats
- Adjustments Made Directly On Equipment
- Difficult to "Tune" Or Optimize
- No "Cross System" Integration Or Optimization
- Limited Temperature Monitoring

Technology & Regulatory Concerns Drive Improvements In Systems And Better Control

- Advances In Sensing Technology & Electronics Enable Cost Effective Electronic Controls
- Electronics Platforms Enable
 Improved Control & Optimizations
 For Energy And Maintenance
- Regulatory Drivers Force Energy & Refrigerant Considerations
- Case Temperature Monitoring For Food Safety & Compliance

Discussion Topics

Islands Of Control

Background & Evolution of Controls; The Transition To Electronics

Integration & Supervisory Functions

How The EMS
Came To Be &
What It Does
Today

Getting Your Money's Worth

Using All The Capabilities In State of the Art Systems

And Beyond: What's Next?

What's Driving
Next Generation
Systems
Development

"Islands Of Control" Integrated To Form A Complete Energy Management System

- **Individual Systems Tied Together**
- **Information Sharing Across Systems**
- **Emergence Of "Supervisory Functions"**
- **Integration / Control Advancements Similar To Auto Industry Evolution**
 - **Communication Technologies**
 - **More Sensors**
 - Smarter Control
 - **Use Data To Drive Actions**

Connecting The "Islands" Into An EMS

Layers And Functions Of An EMS

Key Elements

- Remote User Interface
- Site Information
- Data Feed
- On Site User Interface
- User Management
- Data Logging
- Alarming
- Cross System Coordination
- Control Algorithms
- Inputs & Outputs
- Sensors & Transducers
- Equipment Interface

Integration Of "3rd Party" Equipment Leverages EMS Functionality To Provide Control & Information

Note: Statistics based on Emerson's E2 support (113 Devices)

Benefits

- Common User Interface Across Site
- Remote Access
- Normalized Information (Alarms, Logs, etc.)
 Using EMS Infrastructure
- Operational Visibility

EMS Supports Different Control Architectures

Centralized Control Architecture

Distributed Control Architecture

- Control Elements At Refrigeration Rack Or Electrical Panel
- "Home Runs" For Sensors

- Control Elements At Case
- Communication "Daisy Chain" To EMS
- Load Control At Refrigeration Case

Installation Costs Similar Across Architectures

Predominant Control Architecture Varies By Region: CO2 Impacting Future

Discussion Topics

Islands Of Control

Background &

Evolution of

Controls; The

Transition To

Electronics

Integration & Supervisory Functions

How The EMS
Came To Be &
What It Does

Today

Getting Your
Money's
Worth

Using All The Capabilities In State of the Art Systems

And Beyond: What's Next?

What's Driving
Next Generation
Systems
Development

<u>Energy Management & Maintenance</u> Key To Operational Excellence And Profitability

EMS Provides Operational Visibility Utilizing Control Data

Customer Motivations

- Enhance Operational Life Of Compressors
- Avoid Unplanned Downtime
- Reduce Total Cost Of Ownership Of Store Infrastructure

Average 1-3 Compressor
Replacements Per Store Per Year
Avoided

~ Savings \$3K-\$10K/Year/Store

Area At Site

Use EMS Alarm Information To Prioritize Maintenance Activities

Received and Proceedings of the Control of Street S

Energy & Store Development Conference 2013 E+S

EMS Can Automate Food Temp Monitoring For Compliance Purposes

Manual Process

Automated Process

- "Walk" The Store Periodically
- Manually Record Temperature
- File For Access As Necessary
- "Hope" There Are No Errors Or Omissions

- Requires One Time Setup
- Can Run Automatically
- Eliminates Errors
- Provides Secure Access To Information
- Life Cycle Cost Advantage

Use The EMS To Simplify Food Safety Initiatives

Refrigeration Control Systems Monitor & Control Food Temperature

AND Provide Information For Multiple Functions

- Process Improvement
- Regulatory Compliance
- Problem Identification

Energy & Store Development Conference 2013

E+S

The 4 Stages of Energy Reduction

Energy Reduction Is A Continuous Process

Utilize Advanced Capabilities Of EMS In Energy Reduction Program

Data Collection

Identify Energy Usage

Optimization

Exception Reporting

Energy
Meters Can
Be Connected
To EMS To
Collect
Energy Data

Results Can
Be Analyzed
& Correlated
With Other
Data From
EMS

And Implement New Control Strategies

Alarms Track
Abnormalities
And Take Action

Monitoring & Control Capabilities Of EMS Key To Energy Reduction Programs

KW Peak Sets
Demand
Charges On
Utility Bill

Utilize EMS To Limit Peak Demand

Load(s) Shed To Keep Peak Below Setpoint

• EMS Monitors Dem

As Demand
 Approaches Preset
 Level, EMS Sheds
 Load(s) Proactively

Keeps Demand Below
 Threshold

Time

Application	Typical Shed Action
HVAC Applications	Raise Cooling Setpoints. Lower Heating Setponits
Sensor Control	Raise Or Lower Cut in/Cut Out
Suction Groups	Raise Suction Setpoint
Lighting	Stage Circuits Off

Advanced Shed Algorithms (i.e. Rotational Shed) Allow Strategies Such As "Comfort First" To Minimize Disruptions

EMS Demand Management Infrastructure Enables Participation In Utility Demand Response Programs

- Several Types Of Demand Response Programs Offered By Utilities
 - Emergency Capacity Programs; You Get Paid For Your Promise To Shed Whether An Event Happens Or Not
 - Price Based Programs; You Determine When To Shed Based On Real Time Pricing
 - Potential For Rebates To Fund Equipment Installation Or Upgrades
- Build On Existing Infrastructure (i.e. EMS, Network, etc.) For Most Cost Effective Solution

Discussion Topics

Islands Of Control

Integration & Supervisory Functions

And Beyond: What's Next?

Background & Evolution of Controls; The Transition To Electronics

How The EMS
Came To Be &
What It Does
Today

Using All The Capabilities In State of the Art Systems

What Driving
Next Generation
Systems
Development

10 Trends In Smart Buildings

- 1. **Building Energy Management Hits The Cloud**
- 2. Co-opetition Is On The Rise In The Building Industry
- 3. Targeted Acquisitions Help Key Players Deliver Energy Services
- 4. Demand For Smart Building Products Will Soar (China)
- 5. US Energy Companies (ESCOs) Turn To Federal Sector
- 6. **Building Communications Protocols Are Converging**
- 7. <u>Demand Response Is Shifting Into Automatic</u>
- 8. <u>Submeters Find New Opportunities In Smarter</u>
 Buildings
- 9. Building Information Modeling (BIM) Is Transforming The Design Process
- 10. The Interface Between Smart Building And The Smart Grid Is Blurring

From Pike Research Report published 2012

Trends Drive 4 Key Areas

- User Interface & Usability
- Communication & Integration
- Cloud Connectivity
- Extensibility And Applications

Web Expectations Drive User Experience

- Web Technologies Drive Standards For All Ul's
 - Web & Mobile Expectations
- Importance Of "View Anywhere" Capabilities
- Increasing Use Of Human Centered Design Techniques
- Personalized User Interface; Role Based
 UI Reduces Information Overload
- Increasing Use Of Charts And Graphics
 To Simplify Information
- Enterprise User Management Simplifies
 Administration
- Single View Across All Areas Of Facility

Site Information Portal

System Integration, Communication & IT Friendly

- "IT Friendly" Will Be The Rule
 - Internet, M2M and Other Technologies
 Drive Best Practices
- Top Level Sub-System Integration Will Drive Interoperability
 - Not A Single Protocol (i.e. BACNet, Echelon, etc.)
 - Flexibility Key
- Wireless Technology Will Drive Installation Costs Down (Especially For Retrofits)
 - Additional Sensors & Data
 - Flexibility In Installation

The Blurry Line Between A Site And The Cloud

- Advanced Network Capabilities Create
 Seamless Cloud/Site Interface
- "Cloud" Applications Extend Capability
 - Data Storage, Enterprise Management
 - Building/Enterprise Analytics
 - Automated Backup/Restore
- Provisioning & Controller Management Automates Previously Manual Tasks
 - Firmware Updates
 - User Management
 - License Management
- Enterprise Analytics
 - Enable "Big Data" Analysis & Actions

E+SO

Extensibility: "Value Add" Capabilities Build On

Base Functionality

- Modular Architecture Enables Flexibility
- Allows Systems To Be
 Adapted To Specific
 Requirements And React To
 Changing Regulatory
 Landscape
- Automated Provisioning Manages Complexity
- Local Algorithms Manage Complex Data Analysis
- Enterprise "Roll Ups" Enable
 Big Data Type Analysis And
 Decisions

Extensibility: Managing The Changing Energy Landscape

- Supporting LEED Accreditation
 - Sub-meters On Key Loads
- Smart Grid Beginning To Drive Automated Demand Response
 - Provides Potential For Direct
 Connect From Utility To Building
 Loads
- Automated Energy Analysis With Normalization To Key Drivers
- Clean Energy Management
 - Net Zero Building Support

Balance Generation With Demand Management Based On Site Conditions

Extensibility: Diagnostics & Health Metrics

Aggregation Across Systems
Creates Site Metric That Can Be
Compared Across Sites

Aggregation Across Components \
To Form System Health

Algorithms Analyze
Performance And Create
"Health" Indicator

Discussion Topics

Islands Of Control

Integration & Supervisory Functions

Getting Your Money's Worth

And Beyond: What's Next?

Background & Evolution of Controls; The Transition To Electronics

How The EMS
Came To Be &
What It Does
Today

Using All The Capabilities In State of the Art Systems

What Driving
Next Generation
Systems
Development

Questions?

Contact Info:

John Wallace

Director Product Management

Emerson Climate Technologies- Retail Solutions

john.wallace@emerson.com

770 425 2724 (Office)

770 313 3011 (Cell)

@johnwallace